If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(^2+7+12)D=0
We multiply parentheses
D^2+7D+12D=0
We add all the numbers together, and all the variables
D^2+19D=0
a = 1; b = 19; c = 0;
Δ = b2-4ac
Δ = 192-4·1·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$D_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$D_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$D_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-19}{2*1}=\frac{-38}{2} =-19 $$D_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+19}{2*1}=\frac{0}{2} =0 $
| 10z+5=3z+5 | | -(y/16)=-2 | | 3p+6=5 | | 20h+5-14h=48h+5 | | 15=7n+3 | | 2x+10=216 | | b^2+6b-15=0 | | 25+3/5x=19-1/5x | | 6m-1=177 | | 8-p=25 | | 5t-5=0 | | (15x+3)4=63 | | ∣m+8∣=12 | | X+1÷2=7x | | 50+p+10p=5p-10 | | 3(x-17)-4(2x+3)=14 | | 2x+2x+4=26 | | 100m-50m=25m-10m | | 14-q=21 | | (5u+2)2=3u | | -2/5y=4. | | 3t(2+1)=12 | | X+3x+4x+2=16 | | 11−2(2x−5)−2x=6x−(5x+3) | | -4(5x-20)=180 | | 2x+2x+9=42 | | 7x-12=2(3x-9) | | 9s+15=0 | | 20(7-d)+11d=113d | | -19x=5 | | 3h-6=12-h | | 4-4.2x=124 |